
NIASM Technical Bulletin - 9

NIASM-Plant Phenomics

October 2016

Published by

Director ICAR-National Institute of Abiotic Stress Management Malegaon, Baramati, 413 115, Pune, Maharashtra

Authored by

Jagadish Rane Mahesh Kumar Prashantkumar Hanjagi Susheel Kumar Raina Govindasamy V Ajay Kumar Singh Narendra Pratap Singh

Citation

Jagadish Rane, Mahesh Kumar, Prashantkumar Hanjagi, Susheel Kumar Raina, Govindasamy, Ajay Kumar Singh and Narendra Pratap Singh. NIASM Plant Phenomics at a glance. pp12

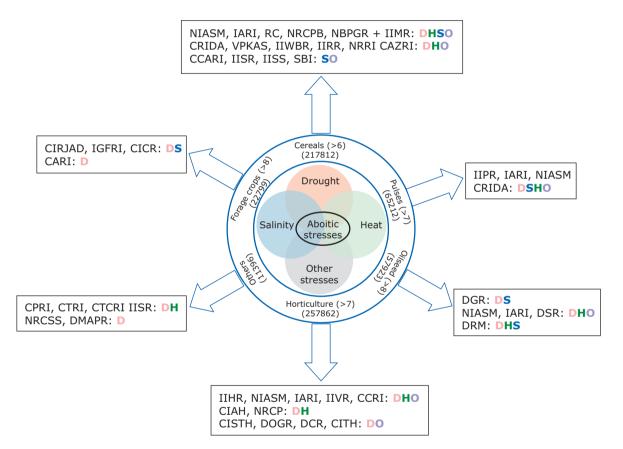
Contact details

Director ICAR-National Institute of Abiotic Stress Management Malegaon, Baramati, 413 115, Pune, Maharashtra Tel.: 02112-254057, 254058 Fax: 02112-254056 Web: www.niam.res.in

Printed at :

Flamingo Business Systems 19, Laxminagar Commercial Complex No. 1 Shahu College Road, Pune 411 009 020-24214636, Email : flamingo.b.s@gmail.com, srgupta.tej@gmail.com

NIASM-Plant Phenomics at a glance


Plant responds to various environmental growth stimuli by adjusting itsmorphology, anatomy, phenology and cellular metabolism. As a consequence growth, development and productivity of crop increase or decrease in favorable and unfavorable environments respectively. Much of the achievements so far in improving the productivity of crops is attributed to empirical selection for yield and yield components. This was more apparent in favorable growth environment than in those affected by drought, high temperature, salinity etc. Hence, there is an increasing focus on traits associated with tolerance to these abiotic stresses. Further genes associated with such traits are the keys for further improvement as plant responses to stresses are manifestation of gene action in cellular and molecular mechanisms. To establish the association between genes and traits it is essential to understand both these components while the power of prediction of association is largely governed by number of genotypes characterized. There is a significant progress in genomics, the science of understanding structure and function of genes, but lack of matching advances in understanding the trait and characterizing plant responses in large scale is the major bottleneck. Hence, Plant Phenomics is emerging as a science that aims at characterization of plant responses to environmental factors precisely and rapidly through non-destructive methods that allow screening of genotypes in a large scale.

Features of Plant Phenomics in controlled environment

- Automated control of growth environment including soil moisture
- Desired level of water stress is maintained and monitored with greater precision
- Controlled environment allows screening for high temperatures and other abiotic stresses
- Acquisition, processing and analysis of images invloved in assessing plant response
- Automation minimizes labour requirement for repeated characterization of huge set of germplasm
- Non-destructive as plant responses are captured in images obtained from different electromagnetic radiation
- Images from visible range reveals changes in morphology and developmental stages
- Images from infra-red range reveals variation in plant temperature
- Images from near infrared range reveals plant water status

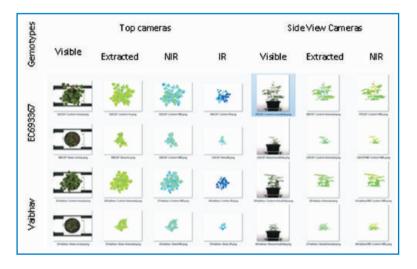
Why we need phenomics platform?

- The traditional approach with emphasis only on yield components for improvement of crop productivity is not as efficient as it was at the beginning of green revolution.
- Trait based selection is essential for each of the diverse agro-ecosystems vulnerable to climate change
- It is necessary to phenotype plant population that have been generated for genetic dissection of plant responses to stresses
- Large collection of germplasm of different crops needs to be phenotyped for identifying promising source of stress tolerance

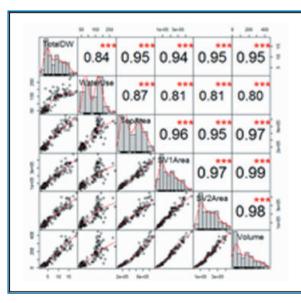
More than 40 institutes, more than 60 SAUs and private organisations are investigating abiotic stress tolerance in more than 56 crops and a total of 4.3 lakh accessions are in germplasm bank needs phenotyping services. In addition, with emphasis on common protocol for phenotyping in the context of global demand for phenotype database of different crops, high throughput and image based screening protocols are gaining immense importance.

Plant phenomics facility at NIASM

The installation of facility was completed on September 01-09-2015 by LemnaTec, GMBH, Germany under National Innovations for Climate Resilient Agriculture (NICRA). The facilities allow screening of 216 plants at a time and it is possible to screen thousands of lines for responses of plants to a particular phase of crop growth with staggered planting and growth initially under natural condition. The facility is equipped with cameras for acquiring images in visual, infrared and near infrared range for morpho-physiological traits, surface of electro mangentic spectrum temperature and plant water relations respectively. It has programmable and automated irrigation and weighing system to create and monitor soil moisture stress. Automated temperature regulation can allows screening for high temperature tolerance. Robust software and hardware allow acquisition, storage and analysis of huge set of images. Research projects facilitated by this technology vary from large scale screening of early growth and tolerance to abiotic factors like soil moisture stress, salinity and nutrient imbalance. It has diverse application ranging from phenotyping for known traits to identification of novel or surrogate traits associated with stress tolerance. The facility has been provided with dedicated power supply and also the power backup for uninterrupted functioning. **Objectives**


- To develop plant phenomics protocols for characterization of responses of crops to abiotic stresses mainly drought, high temperature and salinity
- To identify alternative traits to accelerate characterisation of plants responses to complex and difficult to measure traits associated with stress tolerance
- To identify promising genotypes that have attributes contributing to stress tolerance
- To identify traits and genes associated with tolerance to drought, high temperature and salinity
- To complement efforts of plant breeder and molecular biologists involved in investigation of genes associated with tolerance to abiotic stresses in field and horticultural crops
- To develop plant phenome database by employing common methods and comparable procedures
- To facilitate development low cost indigenous plant phenotyping tools for controlled and field experiments by validation of results in HTP phenotyping

LEMNATEC SCANALYZER-PROCESS AND FUNCTION


Optimisation of phenomics protocol

For efficient phenotyping image based protocols needs to be optimised for each crop. Hence several experiments were carried out with different crops such as mungbean, chickpea, soybean, maize and wheat. Methods have been standardized to predict biomass of mungbean based on area sensed by visible camera as derived from specifically designed image analysis configuration. Methods are being optimised for other crops.

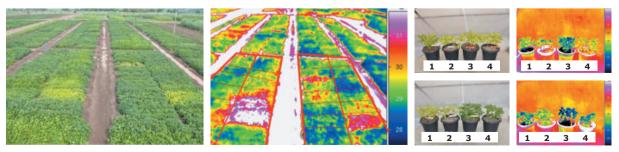
Extraction of images from original images

Visible area as surrogate parameter

Visible area derived from 24 Genotypes grown with or without water stress in three replications (144 pots). Area and volume derived from images could explain the variation in water use and biomass (Total DW) in mungbean. This optimised method can now be used to assess mungbean genotypes for their capacity to utilise soil moisture effectively during the growth period.

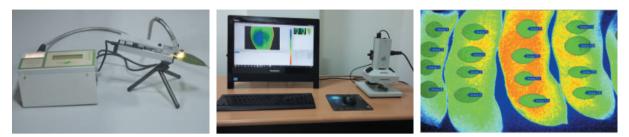
Field Phenomics initiatives

Prototype of tools for image based phenotyping


Taking into consideration the need to accelerate phenotyping in field, efforts have been made to develop phenotyping tools. A hand operated track mounted trolley was designed for imaging purpose which hosts a camera and a Lap Top PC. The system acquires images of each plot in the experimental field after recognising the barcode. Images are stored with plot name. Tools have also been developed to rapidly analyse these images. Promising results have been obtained with image acquisition and analysis tool. This field based, semi- automated platforms potentially allow high-throughput phenotyping at a low cost.

Prototypes to screen genotypes in field (a) pot culture (b) tools for rapid analysis of images (c)

Phenotyping for canopy temperature


- Identification of superior and high yielding genotypes with higher canopy temperature and those with cooler canopy temperature as compared to locally adapted cultivars in wheat soybean , mungbean and chickpea.
- Higher yield in some genotypes despite its higher CT throughout its growth period as compared to other genotypes could be partially attributed to high net assimilation rate and quantum yield, as indicated by chlorophyll fluorescence parameters.
- CTD measured at the reproductive stage explained a major proportion of the variation in grain yield both under sufficient and deficit soil moisture conditions in soybean.
- Simple methods were developed to process the thermal image.

Soybean field as viewed through visible imaging (a) Infrared imaging system (b) and pot culture

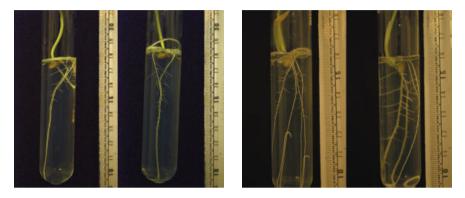
Phenotyping for photosynthetic efficiency under stress

• Considerable genetic variability obtained in wheat, soybean and mungbean for PSII reflected by Fv/Fm.

Fluorescence monitoring system (a), fluorescence imaging system (b) and Chlorophyll fluorescence imaging of soybean pod (c)

- Chlorophyll fluorescence based imaging was effectively used to demonstrate that photosynthetic system (PSII) of spikes of *T. durum* is more tolerant than that of *T. aestivum*.
- T. aestivum
 Image: Sector Sector

Chlorophyll fluorescence imaging to assess desiccation tolerance


- Chlorophyll fluorescence imaging revealed that sensitivity of photosystem of dragon fruit to temperature was less than that of other fruit crops. Acid lime was more tolerant to temperature than other fruit crop.
- Photosystem of pomegranate were less sensitive while sensitivity to desiccation was conspicuous in Mango

RGB Image based techniques

- A low-cost and non-destructive, easy to use method is being developed to evaluate the chlorophyll content of soybean using leaf image colour analysis
- Promising results have been obtained with image acquisition and analysis tool developed to assess leaf expansion rate, growth rate and leaf senescence of soybean and it can work as low cost non-destructive phenotyping tool for large scale phenotyping.

In vitro techniques for root system architecture

Techniques developed for *in vitro* root studies revealed significantly different root system architecture in terms of number of roots and length of roots in some promising wheat genotypes compared to locally adapted genotypes indicating that high biomass obtained in field was partially due to efficient root system. This technique can be scaled up as medium throughput phenotyping method for root system architecture.

In vitro root system of HD-2189 (a) and IC-549394 (b)

Present collaboration

NICRA, CRIDA, Hyderabad; IIPR, Kanpur; NBPGR, New Delhi; DSR, Indore, IIWBR, Karnal

Phenomics facilities

India

ICAR-NIASM, Baramati ICAR-IARI, New Delhi ICAR-IIHR, Bangalore ICAR-CRIDA, Hyderabad

China

CAAS, Beijing Harbin Agripheno, Pudong, Shanghai

Australia

Victoria laboratory, Horsham, ACPGF, Adelaide

Germany

IPK Gaterlaben Plant Science Research Centre, Julich

France

INRA science and impact, Dijon INRA Montpellier

Netherland

Keygene

Italy

Metaponto (ITALY)

United Kingdom

Rothamsted Research Station Aberysstwyth University

Canada

McGill Phenomics Platform, Canada

USA

Donald Danfroth Plant Science Center Arkansas State University

Abbreviations

CARI	Central Island Agricultural Research Institute , Port Blair
CAZRI	Central Arid Zone Research Institute, Jodhpur
CAZRI	Central Arid Zone Research Institute, Jodhpur
CCARI	Central Coastal Agricultural Research Institute, Ela, Old Goa, Goa
CIAH	Central Institute for Arid Horticulture, Bikaner
CIAH	Central Institute of Cotton Research, Nagpur
CICR	Central Institute of Cotton Research, Nagpur
CIRJAF	Central Research Institute for Jute and Allied Fibres, Barrackpore
CISTH	Central Institute of Sub Tropical Horticulture, Lucknow
CITH	Central Institute of Temperate Horticulture, Srinagar
CPRI	Central Potato Research Institute, Shimla
CRIDA	Central Research Institute of Dryland Agriculture, Hyderabad
CSSRI	Central Soil Salinity Research Institute, Karnal
CTCRI	Central Tuber Crops Research Institute, Trivandrum
DGR	Directorate of Groundnut Research, Junagarh
DMAPR	Directorate of Medicinal and Aromatic Plants Research, Anand
DRM	Directorate of Rapeseed & Mustard Research, Bharatpur
DSR	Directorate of Soybean Research, Indore
IARI	Indian Agricultural Research Institute, New Delhi
IGFRI	Indian Grassland and Fodder Research Institute, Jhansi
IIHR	Indian Institute of Horticultural Research, Bengaluru
IIMR	Indian Institute of Maize Research,New Delhi
IIPR	Indian Institute of Pulses Research, Kanpur
IIRR	Indian Institute of Rice Research, Hyderabad
IISR	Indian Institute of Sugarcane Research, Lucknow
IISS	Indian Institute of Soil Sciences, Bhopal
IIWBR	Indian Institute of Wheat and Barley Research, Karnal
NBPGR	National Bureau of Plant Genetics Resources, New Delhi
NIASM	National Institue of Abiotic Stress Management, Malegaon, Maharashtra
NRCP	National Research Centre for Pomegranate, Solapur
NRCPB	National Research Centre on Plant Biotechnology, New Delhi
NRCSS	National Research Centre on Seed Spices, Ajmer
NRRI	National Rice Research Institute, Cuttack
RC	ICAR Research Complex for Eastern Region, Patna
RC	ICAR Research Complex for NEH Region, Barapani
SBI	Sugarcane Breeding Institute, Coimbatore
VPKAS	Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora

भाकृअनुप-राष्ट्रीय अजैविक स्ट्रैस प्रबंधन संस्थान

(समतुल्य विश्वविद्यालय)

भारतीय कृषि अनुसंधान परिषद

मालेगांव, बारामती 413 115, पुणे, महाराष्ट्र, भारत दूरध्वनी : 02112-254057, फैक्स : 02112-254056

ICAR-National Institute of Abiotic Stress Management

(Deemed University)

Indian Council of Agricultural Research Malegaon, Baramati 413 115, Pune, Maharashtra, India Phone : 02112-254057, Fax : 02112-254056 Web : www.niam.res.in